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ABSTRACT

Positive definite and semidefinite matrices induce well

known duality results in quadratic programming. The converse

is established here. Thus if certain duality results hold

for a pair of dual quadratic programs, then the underlying

matrix must be positive definite or semidefinite. For example

if a strict local minimum of a quadratic program exceeds or

equals a strict global maximum of the dual, then the underly-

ing symmetric matrix Q is positive definite. If a quadratic

program has a local minimum then the underlying matrix Q is

positive semidefinite if and only if the primal minimum

exceeds or equals the dual global maximum and x TQx = 0 implies
Qx = 0. A significant implication of these results is that

the Wolfe dual may not be meaningful for nonconvex quadratic

programs and for nonlinear programs without locally positive
definite or semidefinite Hessians, even if the primal second

order sufficient optimality conditions are satisfied.
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SIGNIFICANCE AND EXPLANATION

Constrained optimization problems occur in dual pairs

when certain "valley" conditions (convexity or positive

definiteness) are satisfied. This pairing has some very

useful theoretical and computational implications. In this

work we show the converse, namely that if a pair of problems

are connected through a duality relation then these valley

conditions must be satisfied.
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CHARACTERIZATION OF POSITIVE DEFINITE AND
SEMIDEFINITE MATRICES VIA QUADRATIC PROGRAMMING DUALITY

S.-P. Han & 0. L. Mangasarian

1. INTRODUCTION

It is well known [3,4,11,10] that the dual quadratic

programs

(la) Minimize lxTQx + p x
x

subject to Ax < b

Cx= d

(ib) Maximize -XT~ x - bTu dTv

subject to Ox + ATu + cTv + p 0

U > 0

where Q, A and C are given real matrices of order nxn,

mxn and kxn respectively, with Q = QT, and p, b and d

are given vectors in the real finite dimensional Euclidean
n kspaces Rn , R and Rk respectively, possess many important

relations when Q is positive semidefinite or positive defi-

nite. In this paper we are interested in the converse: What

sort of duality relations between (la) and (ib) induce posi-

tive definiteness or semidefinitness in Q? A key role in
deriving these converse relations is played by the following

conjugate cone characterization of positive definite and semi-
definite matrices [8].

1.1 Theorem [8] Let K be a nonempty convex polyhedral cone

in Rn. The nxn real matrix P is positive semidefinite if

and only if P is positive semidefinite plus on the cone K

and positive semidefinite on the conjugate cone KP, that is

x IK x Tpx > 0
! ' (2)T-

()XTPX = 0, x c K - (p+pT)x = 0

Sponsored by the United States Army under Contract No.
DAAG29-80-C-0041. This material is based on work supported by
the National Science Foundation under Grants ENG-7903881,
MCS-7901066 and MCS-8200632.
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(3) yEKP:= {yly(P+T)x<0, Vxe K} yTpy > 0

1.2 Theorem [8] Let K be a nonempty convex polyhedral cone

in Rn. The nxn real matrix P is positive definite if and

only if P is positive definite on K and KA that is:

0 # xc K x Px > 0

0 10 y eK£ . yTpy > O

With the help of these characterization theorems and the

second order optimality conditions of quadratic programming

[6,9,2,1] we show for example in Theorem 3.5 that if a strict

local minimum of a quadratic program exceeds or equals a strict

global maximum of the dual, then the matrix Q must be posi-

tive definite. In Theorem 3.6 we show that if a quadratic

program has a local minimum then Q is positive semidefinite

if and only if the primal minimum exceeds or equals the dual

global maximum, and Qx - 0 whenever x TQx = 0. In Corollary

3.7 we show that if the primal feasible and dual feasible sets

are nonempty and if the weak duality relation holds, that is

the primal objective exceeds or equals the dual objective over

their respective feasible regions, and if Qx = 0 whenever

xTQx = 0, then Q is positive semidefinite. In [7] positive-

definiteness of the Hessian of the Lagrangian of nonlinear

programs was established under more restrictive assumptions.

The import of these and our other results is that when

certain simple and desirable duality results are satisfied by

a pair of dual quadratic programs, then the underlying matrix

must be positive definite or semidefinite. This leads to the

conclusion that the Dennis-Dorn-Wolfe quadratic dual programs

[3,4,11] are meaningful only if the underlying matrix is

positive definite or semidefinite. Ebr example even if the

primal quadratic problem (la) has a unique global minimum

solution (and thus satisfying the second order sufficient

optimality condition), and if the underlying matrix is not

positive semidefinite then the dual quadratic problem (lb) may

not make sense. Thus the example
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minimize x - x2 subject to x2 = 0

has the unique global solution x = x= 0 but its dual

maximize x x + vx2  subject to x = 0,-2x 2 + v =0

is unbounded above. Similarly the Wolfe dual for nonlinear

programs may not be meaningful unless the Hessian of the

Lagrangian is locally positive definite or semidefinite in the

neighborhood of a stationary point of the primal problem [7].

Thus even if the second order sufficient optimality conditions

are satisfied but the Hessian of the Lagrangian is not positive

definite or semidefinite in a neighborhood of a local minimum

solution, the dual problem may not make sense.

We shall need second order optimality conditions for the

dual quadratic programs (la) and (lb) which have local and

strictly local solutions. These results can be found in

* [9,2,1) which we summarize here in a convenient form. The

points Rn+m+k  and (x,u,v,w) n+m+k+n are Karush-

Kuhn-Tucker points of (la) and (Tb) respectively if they

satisfy the following respective conditions [10]

(4a) Qi + ATu + CT + p =0 (4b) -Qi + Q; = 0

Arcb A'-b<0

cR = d Cw - d = 0
~~oAT - +CT +p=o

;T(A7-b) = 0 0i o

aT(Aw-b) = 0

Note that if (xu) is a Karush-Kuhn-Tucker point of (la)

then ( is a Karush-Kuhn-Tucker point of (lb). To

characterize local solutions we need to define the following

index sets associated with a Karush-Kuhn-Tucker point (iu, )
of (la):
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J:- 2. L' bi 1

K:-= {IA . =b i, ;i =o1

E:= JuK - {i Aix=b i I
I:- UA i < bi , Gi -- 01

The notation AE will represent the rows Ai of A with

i c E. We can now state the following.

1.3 Theorem [2,1] (Characterization of local solutions of

quadratic programs) A point x c Rn is local minimum solution

of the quadratic program (la) if and only if R and some

u) c R~k satisfy the Karush-Kuhn-Tucker conditions (4a) and
(5a) Tx , CX 0 - xTQX 1 o

The Karush-Kuhn-Tucker point (xuv) of (la) is a local

maximum solution of the dual quadratic program (lb) if and only

if

(5b) Qx + ATu + CTv = 0, (K,UI ) Z 0 *XTQxo 0

1.4 Theorem E9,2,1] (Characterization of strict local solu-

tions of quadratic programs) A point x C Rn is a strict local
minimum solution of the quadratic program (la) if and only if

i and some (ui,7}) e k satisfy the Karush-Kuhn-Tucker

conditions (4a) and

(6a) Ajx - 0, AKX 1 0, Cx = 0, x # 0 - x TQx > 0

The Karush-Kuhn-Tucker point (xu) of (la) is a strict

local maximum solution of the dual quadratic program (lb) if

and only if

(6b) Qx+ATu+CTv=0, UK>O, uI0, (Xu,v) #O,8xTQx>0.

In the next two sections we characterize positive definite

and semidefinite problems in terms of equality-constrained
quadratic programs (Section 2) and inequality-constrained

quadratic programs (Section 3). This split into equality- and
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inequality-constrained problems permits the statement of some-

what sharper results for the former. For simplicity we con-

fine the results of Section 3 to inequality constraints only.

Problems with both equality and inequality constraints can be

handled in a straightforward extension of the results of

Section 3.
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2. EQUALITY-CONSTRAINED QUADRATIC PROGRAMS

We specialize here the dual problems (la) and (ib) to the

following equality-constrained dual quadratic programs

I T T lT T(7a) Minimize Ix Qx+p x (7b) Maximixe -xOx -d v
x x,v

subject to Cx = d subject to Qx + CTv + p =0

We say that a problem is feasible, if the set of points

satisfying its constraints is nonempty.

2.1 Theorem (Characterization of positive semidefinite and

definite matrices) Let (7a) be feasible.

i) Let (7b) be feasible. A necessary and sufficient

condition for Q to be positive semidefinite is

that (7a) has a local minimum, (7b) has a local

maximum solution and

(8) xTQx =0 , Cx = 0 - Ox = 0

(ii) A sufficient condition for Q to be positive

definite is that (5a) has a strict local minimum

solution and (5b) has a strict local maximum solu-
tion. This condition is also necessary if C has

linearly independent rows.

Proof (i) Necessity follows from existence and duality theory

of convex quadratic programming [5,10]. We establish suffi-

ciency now by means of Theorem 1.1. Define

(9) K:- (xCx= 0

Then

(10) KQ:= {yIyTQx 0, Vxe K)

- {yly TQx> 0, Cx=0 has no solution x}

- {YIQy+ CTv=01

Since (7a) has a local minimum solution it follows by

Theorem 1.3 (5a) and (9) that



I.-7-

() xQx > 0 for xcK 

Since (7b) has a local maximum solution, it follows also by

Theorem 1.3 (5a) and (10) that

(12) yTQy > 0 for yc KO

Hence by (11), (8), (12) and Theorem 1.1, 0 is positive

semidefinite.

(ii) (Necessity) That both (7a) and (7b) have solutions

follows from the feasibility of (7a) and the positive definite-

ness of Q. The uniqueness of solution for (7a) follows from

the positive definitness of Q. The uniqueness of solution for

(7b) follows from the positive definiteness of Q, the linear

independence of the rows of C and Theorem 1.4 (6b).

(Sufficiency) We establish sufficiency by means of

Theorem 1.2. Since (7a) has a strict local minimum solution

it follows by Theorem 1.4 (6a) and (9) that

(13) xTQx>O for O xcK

Since (7b) has a strict local maximum solution, it follows also

by Theorem 1.4 (6a) that

x TQx > 0 for Qx + C Tv = 0, (x,v) 91 0

and hence by (10)
(14) yT • 0 for 0 ycK o

Hence by (13), (14) and Theorem 1.2, Q is positive

definite. 0
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3. INEQUALITY-CONSTRAINED QUADRATIC PROGRAMS

We turn our attention now to the following inequality

constrained dual quadratic programs

(15a)1 Mnmz iT T i(15a) Minimize Ix TQx +p x (15b) Maximize - 2xTQx -bTu

subject to Ax<b subject to Cx+ATu+p = 0

u O 

3.1 Theorem (Characterization of positive semidefinite and

definite matrices) Let (15a) be feasible.

(i) Let (15b) be feasible. A necessary and sufficient

condition for Q to be positive semidefinite is

that (15a) has a local minimum solution i with

multiplier u, that (R,u) is a local maximum

solution of (15b) and

(16) xTQx = 0, A x = 0, AKX; 0 - Qx = 0

(ii) A sufficient condition for Q to be positive

definite is that (15a) have a strict local minimum
solution i with multiplier 5, and (R,u) is a

strict local maximum solution of (15b). If in

addition the rows of Aj are linearly independent,

Ajx = 0, AKx > 0 has a solution, then this condi-

tion is also necessary.

Proof (i) Necessity follows from existence and duality theory
of convex quadratic programs. We establish sufficiency now by

means of Theorem 1.1. Define

(17) K:- (xlIAx= 0, AKx, 0 c {xIAEx<0o

Then

KQ{yyTQx<0,VxcK}={y yTQx>0,Ajx=0,AKx0, has no solution x}

={YIQy-Ajuj-AKUK=0, uK40)

Therefore

(18) -Ko -(xlQx+ATu=0, UKI0, ui=0)
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Since K is a local minimum solution of (15a) with multiplier

it follows from Theorem 1.3 (5a) and (17) that

(19) xTQx>O0 for xcK

Since (x,E) is also a local maximum solution of (15b) it

follows from Theorem 1.3 (5b) and (18) that xTQx > 0 for

for x a-K which is equivalent to
T

(20) xTQx 0 for xEKO

Conditions (19), (16), (20) and Theorem 1.1 imply that Q is

positive semidefinite.

(ii) (Necessity) That both (15a) and (15b) have solutions

follows from the feasibility of (15a) and the positive definite-

ness of Q. The uniqueness of solution of (15a) follows from

the positive definitness of Q. The uniqueness of solution of

(15b) follows from the positive definiteness of Q, the linear

independence of the rows of A., the existence of a solution

to Ajx = 0, AKx > 0 and Theorem 1.4 (6b).

(Sufficiency) We establish sufficiency by means of

Theorem 1.2. Since (15a) has a strict local minimum solution

R it follows by Theorem 1.4 (6a) and (17) that

(21) xTQx> 0 for 0 IxcK

Since (x,u) is a strict local maximum solution of (15b) it

follows from Theorem 1.4 (6b) and (18) that

(22) xTQx> 0 for 0 YxeK0

Hence by (21), (22) and Theorem 1.2, Q is positive

definite. 0

3.2 Corollary (Globalization of local dual solutions)

(i) Let R be a local minimum solution of (15a) with

multiplier u, let (,ui) be a local maximum

solution of (15b) and let (16) hold. Then 0 is

positive semidefinite and hence x is a global
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minimum solution of (15a) and (R,u) is a global

maximum solution of (15b).

(ii) Let i be a strict local minimum solution of (15a)

with multiplier u, let (xu) be a strict local

maximum solution of (15b) then Q is positive

definite and hence i is a global strict minimum

solution of (15a) and (x,u) is a global maximum

solution of (15b).

We note that condition (16) of Theorem 3.1 cannot be

dispensed as shown by the following pair of dual programs:

Minimize Xlx2  Maximize -Xlx2

subject to xI , 0 subject to x1 - u2 = 0

x2  0 x2 - u1 = 0

(UlU 2) 0

Clearly (xlX 2) = (0,0) is a global solution to the primal

problem, (x1,X2,UlU 2 ) = (0,0,0,0) is a Karush-Kuhn-Tucker

point for the primal problem as well as a global solution to

the dual problem. However the underlying matrix Q -i

is not positive semidefinite because condition (16) is

violated.
We establish now other duality results which induce posi-

tive definiteness or semidefiniteness. We begin by a few

preliminary results.

3.3 Lemma Let (x,u) satisfy the Karush-Kuhn-Tucker condi-

tions of (15a). Then

(23) OQ+ pTx flxTQx -bTu

implies that

(24) 1 ;T - - T; >bTu

.... b1 -... I . ...l1t xTl ... .. .x. .
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Proof From the Karush-Kuhn-Tucker conditions of (15a) we have

that

.x Qx - pTx - bTi u 0

which when added to (23) yields (24). 0

3.4 Lemma Let (xu) satisfy the Karush-Kuhn-Tucker condi-
tions of (15a) such that for all (x,u) feasible for the dual

quadratic program (15b)
(25) 1-TQ + pT i 1 xTgx - bTu

Then (xi,ii) solves (15b).

Proof Since (xu) is feasible for the dual quadratic program

(15b) and since by (25) and Lemma 3.3
1-iTOR - bT -xTQx - bu

for all dual feasible (x,u), it follows that (iu) solves

(15b). 0

3.5 Theorem (Sufficient condition for positive definiteness)

If a strict local minimum of the quadratic program (15a)

exceeds or equals a strict global maximum of the dual quadratic

program (15b) then Q is positive definite.

Proof Let u be a multiplier associated with the strict local

minimum solution of (15a). By Lemma 3.4, (R,U) is a global

maximum solution of (15b). By assumption this global maximum

is strict. Hence by Theorem 3.1 (ii) Q is positive

definite. 0

3.6 Theorem (Characterization of positive semidefinite

matrices) Let x be a local minimum solution of (15a). The

matrix Q is positive semidefinite if and only if (16) holds

and for any dual feasible (x,u)

(26) 1-T-R + P~ lxTQx - b Tu
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Proof Necessity follows from the duality theory of quadratic

programming and the fact that xTQx = 0 implies Qx = 0 for

any symmetric positive semidefinite matrix. To prove suffi-

ciency we note that there exists a u such that (x,u) is a

Karush-Kuhn-Tucker point of (15a) and by (26) and Lemma 3.4,

(i,) is a global maximum solution to (16b). Hence by

Theorem 3.1 (i) Q is positive semidefinite.

A direct consequence of Theorem 3.6 is the following

characterization of positive semidefinite matrices in terms of

the weak duality [10] relation of quadratic programs.

3.7 Corollary (Positive semidefiniteness via weak duality)

Let the quadratic programs (15a) and (15b) be feasible. The

matrix Q is positive semidefinite if and only if for all

primal feasible x and all dual feasible (y,u)
(2)1xT T 1 T bT

(xQ + p XyQy bu

and

(28) zTQz 0- Qz = 0
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ABSTRACT (cont.)

global maximum of the dua then the underlying symmetric matrikx Q is

positive definite. If/a quadratic program has a local minimum then the

underlying matrix Q is positive semidefinite if and only,-if the primal

minimum exceeds or equals the dual global maximum and T6x = 0 implies

Qx = 0. A significant implication of these results is hat the Wolfe dual

may not be meaningful for nonconvex quadratic programs d for nonlinear

programs without locally positive definite or semidefini e Hessians, even

if the primal second order sufficient optimality conditi ns are satisfied.


